Instead, parts of our atmosphere act as an insulating blanket of just the right thickness, trapping sufficient solar energy to keep the global average temperature in a pleasant range. The Martian blanket is too thin, and the Venusian blanket is way too thick! The 'blanket' here is a collection of atmospheric gases called 'greenhouse gases' based on the idea that the gases also 'trap' heat like the glass walls of a greenhouse do.
hese gases, mainly water vapor (
Most of the radiant energy from the sun is concentrated in the visible and near-visible parts of the spectrum. The narrow band of visible light, between 400 and 700 nm, represents 43% of the total radiant energy emitted. Wavelengths shorter than the visible account for 7 to 8% of the total, but are extremely important because of their high energy per photon. The shorter the wavelength of light, the more energy it contains. Thus, ultraviolet light is very energetic (capable of breaking apart stable biological molecules and causing sunburn and skin cancers). The remaining 49 - 50% of the radiant energy is spread over the wavelengths longer than those of visible light. These lie in the near infrared range from 700 to 1000 nm; the thermal infrared, between 5 and 20 microns; and the far infrared regions. Various components of earth's atmosphere absorb ultraviolet and infrared solar radiation before it penetrates to the surface, but the atmosphere is quite transparent to visible light.
Absorbed by land, oceans, and vegetation at the surface, the visible light is transformed into heat and re-radiates in the form of invisible infrared radiation. If that was all there was to the story, then during the day earth would heat up, but at night, all the accumulated energy would radiate back into space and the planet's surface temperature would fall far below zero very rapidly. The reason this doesn't happen is that earth's atmosphere contains molecules that absorb the heat and re-radiate the heat in all directions. This reduces the heat radiated out to space. Called 'greenhouse gases' because they serve to hold heat in like the glass walls of a greenhouse, these molecules are responsible for the fact that the earth enjoys temperatures suitable for our active and complex biosphere.
Carbon dioxide (
Atmospheric scientists first used the term 'greenhouse effect' in the early 1800s. At that time, it was used to describe the naturally occurring functions of trace gases in the atmosphere and did not have any negative connotations. It was not until the mid-1950s that the term greenhouse effect was coupled with concern over climate change. And in recent decades, we often hear about the greenhouse effect in somewhat negative terms. The negative concerns are related to the possible impacts of an enhanced greenhouse effect. This is covered in more detail in the Global Climate Change section of this Web site. It is important to remember that without the greenhouse effect, life on earth as we know it would not be possible.
While the earth's temperature is dependent upon the greenhouse-like action of the atmosphere, the amount of heating and cooling are strongly influenced by several factors just as greenhouses are affected by various factors.

Scientists use the term albedo to define the percentage of solar energy reflected back by a surface. Understanding local, regional, and global albedo effects is critical to predicting global climate change.
he ability of certain trace gases to be relatively transparent to incoming visible light from the sun, yet opaque to the energy radiated from the earth is one of the best understood processes in the atmospheric sciences. This phenomenon, the greenhouse effect, is what makes the earth habitable for life.
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου